Jabbari, Sara and Steiner, Elisabeth and Heap, John T. and Winzer, Klaus and Minton, Nigel P. and King, John R. (2013) The putative influence of the agr operon upon survival mechanisms used by Clostridium
نویسندگان
چکیده
The bacterium Clostridium acetobutylicum produces acids as an energy-yielding process during exponential growth. An acidic environment, however, is toxic to the cells and two survival mechanisms are in place to prevent them from dying. Firstly, during a solventogenesis phase, the cells take up these acids and convert them to solvents, thus raising the environmental pH. Secondly, the cells undergo sporulation to form highly resistant spores capable of surviving extreme conditions. One possible regulatory mechanism for these processes is the accessory gene regulatory (agr) quorum-sensing system, which is thought to coordinate cell population density with cell phenotype. We model this system to monitor its putative effect upon solventogenesis and the sporulation-initiation network responsible for triggering spore formation. We demonstrate that a high population density should be able to induce both solventogenesis and sporulation, with variations to the parameter set allowing sporulation alone to be triggered; additional distinct signals are capable of restoring the solventogenic response. We compare the agr system of C. acetobutylicum with that of Staphylococcus aureus in order to investigate why the differences in feedback between the two systems may have evolved. Our findings indicate that, depending upon the mechanism of interaction between the agr system and the sporulation-initiation network, the clostridial agr circuitry may be in place either to moderate the number of spores that are formed (in order for this number to reflect the urgency of the situation), or simply as an energy-saving strategy.
منابع مشابه
The putative influence of the agr operon upon survival mechanisms used by Clostridium acetobutylicum.
The bacterium Clostridium acetobutylicum produces acids as an energy-yielding process during exponential growth. An acidic environment, however, is toxic to the cells and two survival mechanisms are in place to prevent them from dying. Firstly, during a solventogenesis phase, the cells take up these acids and convert them to solvents, thus raising the environmental pH. Secondly, the cells under...
متن کاملRegulation of neurotoxin production and sporulation by a Putative agrBD signaling system in proteolytic Clostridium botulinum.
A significant number of genome sequences of Clostridium botulinum and related species have now been determined. In silico analysis of these data revealed the presence of two distinct agr loci (agr-1 and agr-2) in all group I strains, each encoding putative proteins with similarity to AgrB and AgrD of the well-studied Staphylococcus aureus agr quorum sensing system. In S. aureus, a small diffusi...
متن کاملIntegration of DNA into bacterial chromosomes from plasmids without a counter-selection marker
Most bacteria can only be transformed with circular plasmids, so robust DNA integration methods for these rely upon selection of single-crossover clones followed by counter-selection of double-crossover clones. To overcome the limited availability of heterologous counter-selection markers, here we explore novel DNA integration strategies that do not employ them, and instead exploit (i) activati...
متن کاملSecretion and assembly of functional mini-cellulosomes from synthetic chromosomal operons in Clostridium acetobutylicum ATCC 824
BACKGROUND Consolidated bioprocessing (CBP) is reliant on the simultaneous enzyme production, saccharification of biomass, and fermentation of released sugars into valuable products such as butanol. Clostridial species that produce butanol are, however, unable to grow on crystalline cellulose. In contrast, those saccharolytic species that produce predominantly ethanol, such as Clostridium therm...
متن کاملGenome Sequence of the Solvent-Producing Clostridium beijerinckii Strain 59B, Isolated from Staffordshire Garden Soil
The genome sequence of the solvent-producing, spore-forming, saccharolytic, mesophilic bacterium Clostridium beijerinckii strain 59B, isolated from Staffordshire garden soil, was obtained via a combination of sequencing with the 454 and Illumina platforms. This information will allow for metabolic engineering of a potentially industrially useful strain.
متن کامل